Pular para o conteúdo principal

 NÚMERO QUÂNTICO DO INFINITO-DIMENSIONAL  GRACELI.

ONDE TODA PARTE ÍNFIMA E INFINITÉSIMA DE ENERGIA POSSA SER REPRESNTADA DENTRO DE QUALQUER TIPO DE ÁTOMO, OU ESTRUTURA EM QUE SE ENCONTRE DENTRO DO SISTEMA INFINITO-DIMENSIONAL GRACELI.

OU SEJA, ONDE ENVOLVE TENSORES DE GRACELI, SDCTIE GRACELI, E O INFINITO-DIMENSIONAL .




sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

 sistema indeterminístico Graceli ;

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 SISTEMA GRACELI INFINITO-DIMENSIONAL.


COM  ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.

ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.


  TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.



SISTEMA MULTIDIMENSIONAL  GRACELI

ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.


Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional].


DENTRO DE UMA CONCEPÇÃO QUE CADA ÁTOMO É FORMADO DE INFINITAs OUTRAS PARTÍCULAS, E COM INFINITAS OUTRAS ENERGIAS, INTERAÇÕES, TRANSFORMAÇÕES, E OUTROS FENÔMENOS, LOGO SE TEM EM CADA ÁTOMO E OU ELEMENTO QUÍMICO INFINITAS OUTRAS DIMENSÕES. COM INFINITAS VARIAÇÕES NAS CATEGORIAS DE GRACELI , QUE  SÃO: OS POTENCIAIS, TIPOS, NÍVEIS, E TEMPO DE AÇÃO ESPECÍFICO  DO FENÔMENO.

ONDE NOS SISTEMAS  DE GRACELI CATEGORIAS,  FENÔMENOS, ESTADOS, ENERGIAS, ESTRUTURAS, E OUTROS SÃO TIPOS E FORMAS DE DIMENSÕES..


FLUXOS ALEATÓRIOS DE ENERGIAS ELÉTRICA,  E FLUXOS DE SALTOS QUÂNTICOS INFINITESIMAIS E INDETERMINADOS.
SENDO QUE VARIAM CONFORME O SISTEMA INFINITO-DIMENSIONAL.


O SISTEMA INFINITO-DIMENSIONAL DE GRACELI, ASSIM, COMO O SISTEMA SDCTIE GRACELI [SISTEMA ENVOLVENDO DIMENSÕES DE GRACELI, E SUAS CATEGORIAS, ESTADOS FÍSICOS E ESTADOS FÍSICOS DE GRACELI, TRANSFORMAÇÕES E INTERAÇÕES], E OS TENSORES DE GRACELI TEM AÇÃO EM TODA A FÍSICA EM TODOS OS SEUS RAMOS E E DIVISÕES, ASSIM, COMO A QUÍMICA E A BIOLOGIA, QUE TODOS ESTES SE FUNDAMENTEM EM ENERGIAS, ONDAS, ESTRUTURAS, CATEGORIAS, ESTADOS, ESPECTROS, DIMENSÕES, E OUTROS.

OU SEJA, DENTRO DE UM SISTEMA GERAL DE GRACELI TODA FÍSICA DAS ESTRTURUAS, ENERGIAS, ONDAS, DIMENSÕES, ESTADOS, E CATEGORIAS. ESTÃO INSERIDOS NESTES SISTEMA DE GRACELI.
VEJAMOS;






Tunelamento quântico (ou efeito túnel) é um fenômeno da mecânica quântica no qual partículas podem transpor um estado de energia classicamente proibido. Isto é, uma partícula pode escapar de regiões cercadas por barreiras potenciais mesmo se sua energia cinética for menor que a energia potencial da barreira. Existem muitos exemplos e aplicações para os quais o tunelamento tem extrema importância, podendo ser observado no decaimento radioativo alfa, na fusão nuclear, na memória Flash, no diodo túnel e no microscópio de corrente de tunelamento (STM).[1]

Ficheiro:Quantum tunnel effect and its application to the scanning tunneling microscope.ogv
Vídeo explicativo sobre o Tunelamento Quântico e o Microscópio de Tunelamento

Neste fenômeno consolidam-se conceitos imprescindíveis para a mecânica quântica como a natureza ondulatória da matéria, a função de onda associada a partículas, bem como o princípio da incerteza de Heisenberg.[2]

História

O tunelamento quântico foi desenvolvido a partir do estudo da radioatividade. Em meio ao crescente sucesso da mecânica quântica na terceira década do século 20, nada era mais impressionante do que o entendimento do Efeito Túnel - a penetração de ondas de matéria e a transmissão de partículas através de uma barreira potencial. Depois de algum tempo, o estudo mais aprofundado envolvendo tunelamento, supercondutoressemicondutores e a invenção do Microscópio de tunelamento, por exemplo, renderam à física 5 prêmios Nobel.[3]

Em 1927, Friedrich Hund foi o primeiro a tomar nota da existência do Efeito Túnel em seus trabalhos sobre o potencial de poço duplo.[3] George Gamow, em 1928, resolveu a teoria do decaimento alfa de um núcleo, via tunelamento com uma pequena ajuda matemática de Nikolai Kochin.[4]

Influenciado por Gamow, Max Born desenvolveu a teoria do Tunelamento , percebendo-a como uma consequência da mecânica quântica, aplicável não só à física nuclear, mas a uma série de outros sistemas diferentes. Os físicos Leo EsakiIvar Giaever e Brian Josephson descobriram, respectivamente, o tunelamento de elétrons em semicondutores, supercondutores e a supercorrente através de junções em supercondutores,o que lhes rendeu o Premio Nobel de Física no ano de 1973.[5]

Explicação do fenômeno

Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]

Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.

Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]

O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.

 , 

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]

Aplicações





Em mecânica quântica, uma onda de matéria ou onda de De Broglie é a onda (dualidade onda-partícula) de matéria. As relações de De Broglie mostram que o comprimento de onda é inversamente proporcional ao momento linear da partícula e que a frequência é diretamente proporcional à energia cinética da partícula. O comprimento de onda de matéria é também chamado comprimento de onda de De Broglie.

Em 1924, em sua tese de doutorado, o físico francêsLouis de Broglie (1892-1987), formulou uma hipótese na qual afirmava que[1]:

Toda a matéria apresenta características tanto ondulatórias como corpusculares comportando-se de um ou outro modo dependendo do experimento específico.

Para postular esta propriedade da matéria, De Broglie se baseou na explicação do efeito fotoelétrico, que pouco antes havia sido apresentada por Albert Einstein sugerindo a natureza corpuscular da luz. Para Einstein, a energia transportada pelas ondas luminosas estava quantizada, distribuída em pequenos pacotes de energia ou quanta de luz, que mais tarde seriam denominados fótons, e cuja energia dependia da frequência da luz através da relação , onde  é a frequência da onda luminosa e  a constante de Planck. Albert Einstein propunha desta forma que, em determinados processos, as ondas eletromagnéticas se comportam como corpúsculos. De Broglie se perguntou se tal não poderia se dar de maneira inversa, ou seja, que uma partícula material (um corpúsculo) pudesse mostrar o mesmo comportamento que uma onda.

O físico francês relacionou o comprimento de ondaλ (lambda) com a quantidade de movimento da partícula, mediante a fórmula:

,

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde λ é o comprimento da onda associada à partícula de massa m que se move a uma velocidade v, e h é a constante de Planck. O produto é também o módulo do vetor , ou quantidade de momento da partícula. Olhando a equação, percebe-se que à medida que a massa do corpo ou sua velocidade aumenta, seu comprimento de onda diminui.

Esta hipótese se confirmou três anos depois para os elétrons, com a observação dos resultados do experimento da dupla fenda de Young na difração de elétrons em duas investigações independentes. Na Universidade de AberdeenGeorge Paget Thomson passou um feixe de elétrons através de uma placa de metal delgada e observou os diferentes esquemas preditos. Nos Laboratórios BellClinton Joseph Davisson e Lester Halbert Germer guiaram seu feixe através de uma rede cristalina.

A equação de De Broglie pode ser aplicada a toda a matéria. Os corpos macroscópicos também têm uma onda associada mas, dado que sua massa é muito grande, o comprimento de onda resulta tão pequeno ao ponto de ser impossível perceber suas características ondulatórias.

De Broglie recebeu o Prêmio Nobel de Física em 1929 por esse trabalho, o que o fez ser a primeira pessoa a receber um Prêmio Nobel sobre uma tese de doutorado. Thomson e Davisson compartilharam o Nobel de 1937 por seu trabalho experimental.

Contexto histórico

Após avanços feitos por Max Planck (1858–1947) e Albert Einstein (1879–1955) na compreensão do comportamento dos elétrons e o que seria conhecido como física quântica, Niels Bohr (1885–1962) começou (entre outras coisas) tentando explicar como os elétrons se comportam. Ele veio com novas ideias fundamentais sobre os elétrons e matematicamente derivada da equação de Rydberg, uma equação que só foi descoberta por tentativa e erro. Essa equação explica as energias da luz emitida quando gás hidrogênio é comprimido e eletrificado (similarmente aos sinais de neônio, as lâmpadas de neon, mas com hidrogênio neste caso). Infelizmente, este modelo somente funcionava para a configuração do átomo de hidrogênio, mas suas ideias eram tão revolucionárias que romperiam com a clássica visão do comportamento dos elétrons e pavimentou o caminho para novas ideias no que se tornaria a física quântica e a mecânica quântica.

Louis de Broglie (1892–1987) tentou expandir as ideias de Bohr, expandindo sua aplicação para além do hidrogênio. Na verdade, ele procurou uma equação que pudesse explicar as características do comprimento de onda de toda a matéria. Esta equação foi experimentalmente confirmada em 1927 quando os físicos Lester Germer e Clinton Davisson dispararam elétrons em um alvo cristalino de níquel e o padrão de difração resultante obtido concordava com os valores previstos.[2] Na equação de Broglie o comprimento de onda de um elétron é uma função da constante de Planck (6.626×10−34 joule-segundos) dividido pelo momento (não relativisticamente, sua massa multiplicada pela sua velocidade). Quando seu momento é muito grande (relativamente à constante de Planck), então o comprimento de onda de um objeto é muito pequeno. Isto no caso de objetos com energias triviais, tais como uma pessoa; dado o enorme momento de uma pessoa comparado com a muito pequena constante de Planck, o comprimento de onda de uma pessoa seria muito pequeno (na ordem de 10−35 nanômetros ou menor) a ponto de ser indetectável por qualquer ferramenta de medida. Por outro lado, partículas muitas pequenas (como os elétrons em materiais típicos diariamente) têm um momento muito baixo comparado com os objetos macroscópicos. Neste caso, o comprimento de onda de Broglie pode ser grande o suficiente para que a natureza ondulatória da partícula resulte em efeitos observáveis.

O comportamento como ondas de partículas de momentos pequenos é análogo àquele da luz. Como um exemplo, microscópios eletrônicos usam elétrons, ao invés de luz, para observar objetos muito pequenos. Dado que elétrons tipicamente tem mais momento do que fótons, seu comprimento de onda de Broglie irá ser menor, resultando em melhor resolução espacial.

As relações de De Broglie

Mecânica quântica

As equações de Broglie relacionam o comprimento de onda  ao momento linear , e a frequência  à energia total , (incluindo sua energia de repouso, respectivamente, de uma partícula):[3]

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

e

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde  é a constante de Planck. As duas equações são também escritas como:

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

e

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Utilizando as definições...

  •  /////////////////////

    sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

    é a constante de Planck reduzida (também conhecida como constante de Dirac, pronunciada "h-barra" ou "h cortado"),
  •  é o número de onda angular, e
  •  é a frequência angular.

Em cada par, o segundo é também referido como a relação de Planck-Einstein, dado que ela também foi proposta por Planck e Einstein.

Usando resultados da relatividade especial, as equações podem ser escritas como:

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

e

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Onde  é a massa em repouso da partícula,  é a velocidade da partícula,  é o fator de Lorentz e  é a velocidade da luz no vácuo.

Relatividade especial

Usando a fórmula do momento relativístivo da relatividade especial,

seguem as equações a ser escritas como[4]

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde m0 é a massa de repouso da partícula, v é a velocidade da partícula, γ é o fator de Lorentz e c é a velocidade da luz no vácuo.

Veja o artigo sobre velocidade de grupo para detalhes da derivação das relações de de Broglie. A velocidade de grupo (igual à velocidade da partícula) não deve ser confundida com velocidade de fase (igual ao produto da frequência da partícula e seu comprimento de onda). No caso de um meio não dispersivo, acontecem de serem iguais, mas em outras formas acabam por ser diferentes.




.
Modelo do átomo de Bohr

eletrosfera é constituída de elétrons. Essa região não existiria considerando-se somente os efeitos da mecânica clássica, já que os elétrons migrariam para o núcleo devido a atração do elétron com o próton. Ela existe em consideração aos resultados da mecânica quântica. Diferente da mecânica clássica, o elétron não se comporta como uma partícula e sim como um ente quântico, respeitando a dualidade onda-partícula.

Essa dualidade implica que cada elétron possui um comprimento de onda de Broglie, possuindo tal comprimento de onda há um caráter ondulatório que satisfaz a equação de Schrödinger.

A resposta na estabilidade do elétron está no caráter ondulatório deste ente quântico. O elétron é estável, pois ao redor do átomo ele forma ondas estacionárias, assim como em cordas que possuem harmônicos, nós e ventres. Na eletrosfera, a região de maior probabilidade de encontrar o elétron seria nos ventres e a região onde jamais poderia ser encontrado o elétron seria nos nós, exatamente como nas Ondas estacionárias.

No átomo de hidrogênio o local onde o elétron será encontrado (exceto nos nós) se dá pela equação do Raio de Bohr:

 m/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL


E a energia de cada "harmônico" é dada por: /////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL





.

oscilador harmônico quântico é o análogo mecânico quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas mecânico quânticos que admite uma solução analítica precisa.

Oscilador harmônico monodimensional

Hamiltoniano, energia e autofunções

Funções de onda para os primeiros seis autoestados, . O eixo horizontal mostra a posição y em unidades (h/2πmω)1/2. Os gráficos não estão normalizados.
Densidades de probabilidade dos primeiros autoestados (dimensão vertical, com os de menor energia na parte inferior) para as diferentes localizações espaciais (dimensão horizontal)

No problema do oscilador harmônico monodimensional, uma partícula de massa  está submetida a um potencial quadrático .V/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

 Em mecânica clássica  se denomina constante de força ou constante elástica, e depende da massa  da partícula e da frequência angular .

Hamiltoniano quântico da partícula é[1]:

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde  é o operador posição e  é o operador momento /////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo

.

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde  representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções  são os polinômios de Hermite:

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação  para evitar confusões). Os níveis de energia são

.

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].

A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.

A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.

Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.

Aplicação: moléculas diatômicas

Ver artigo principal: Molécula diatômica

Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:

/////////////////////

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

que se relaciona com a frequência angular mediante  e depende da massa reduzida  da molécula diatômica.

Comentários

Postagens mais visitadas deste blog